

Institute of Engineering & Management, Salt Lake Campus Institute of Engineering & Management, New Town Campus University of Engineering & Management, Jaipur

2nd Semester Syllabus for BCA Admission Batch 2024

Index:

Content	Page No.
Syllabus Structure	3
Data Structures(BCACC201)	4-13
Object oriented programming(BCACC202)	14-19
Computer Architecture(BCACC203)	20-25
Mathematics for Computing(BCAMD201)	26-28

	BCA 2024 Course structure											
	SEMESTER 2											
SL NO	TYPES OF COURSE	SUB CODE	SUB NAME		Т	Р	S	TOTAL CONTACT HRS	CREDIT POINTS			
			THEORY									
1	Computer Science & Application	BCACC201	Data Structures	3	1	0	0	4	4			
2	Computer Science & Application	BCACC202	Object oriented programming	3	1	0	0	4	4			
3	Computer Science & Application	BCACC203	Computer Architecture	3	1	0	0	4	4			
4	Multidisciplinary	BCAMD201	Mathematics for Computing	3	1	0	0	4	2			
5	Value Added Course	BCAESP201	General Studies & Current Affairs -II	2	0	0	0	2	2			
			PRACTICAL									
6	Computer Science & Application	BCACC291	Data Structure lab with C	0	0	2	0	4	2			
7	Computer Science & Application	BCACC292	Object oriented programming lab with C++	0	0	2	0	4	2			
			SESSIONAL		•				•			
8	Skill Enhancement	BCASDP281	Competitive Aptitude Training –II	0	0	0	2	2	2			
9	Ability Enhancement	BCAAE201	Principles of Management	0	0	0	2	2	2			
	MOOCS/MAR/IFC											
10	Value Added Course	MOOCs	Massive Open Online Course	0	0	0	0	0	0			
11	Value Added Course	IFC	Industry and foreign certification	0	0	0	0	0	0			
12	Value Added Course	MAR	Mandatory Additional Requirements(MAR)	0	0	0	0	0	0			
								30	24			

INSTITUTE OF ENGINEERING & MANA

Institute of Engineering & Management, Salt Lake Campus Institute of Engineering & Management, New Town Campus University of Engineering & Management, Jaipur

Syllabus for BCA Admission Batch 2024

Subject Name: Data Structures	Credit: 4	Lecture Hours: 40	
Pre-requisite: Fundamental computer knowledge	edge		
Relevant Links			
Study Material	Coursera	LinkedIn Learning	<u>NPTEL</u>

COURSE OBJECTIVES:

1. Allow to assess how the choice of data structures and algorithm design methods impacts the performance of programs

2. To choose the appropriate data structure and algorithm design method for a specified application.

3. To solve problems using data structures such as linear lists, stacks, queues, binary trees and binary search trees writing programs for these solutions.

4. To efficiently implement the different data structures and solutions for specific problems.

COURSE OUTCOMES:

CO1: Analyze algorithms for time and computational complexity.

CO2: Select appropriate search techniques (Linear Search, Binary Search, Hashing) based on the problem's nature.

CO3: Implement and apply Stacks, Queues, and Linked Lists to various problems.

CO4: Use non-linear data structures for search, insertion, and retrieval; evaluate time complexity of balanced and unbalanced trees, and apply these to relevant problems.

Module	Торіс	Sub	Chapter	Mapping with	Lecture	Corresponding Lab Assignment
No		Торіс	Name	Industry and	Hours	
				International		
				Academia		
1	Introduction	Overview of fundamental concepts	An Introduction to Data Structures. Chapter 1, Data Structures Through C (A practical Approach) G.S.BALUJA	International Academia: https://ocw.mit.edu/ courses/6-006- introduction-to- algorithms-spring- 2020/resources/lectu re-1-algorithms- and-computation/ IndustryMapping:C Lion, Eclipse(IDE),Visual Studio, CLion, Clang	6	 Write a c program to print even numbers using a loop. Write a c program to print the sum of n natural numbers using a loop. Create a student database using structure. Write a C program that allows the user to input details of multiple students (name, roll number, and marks). Implement a function to search for a student by roll number and display their details if found. Write a C program to generate the Fibonacci series using recursion. Ask the user to enter the number of terms in the series and then display the Fibonacci acrias up to that number of terms
	Data Structure	Definition of data structure, Data structure operation	An Introduction to Data Structures Data Structures Through C (A practical Approach) G.S.BALUJA . Chapter			

		1,(1.10)		
Algorithms	Complexity of	Data Stuctures		
Aigontinins	Algorithms	Through C (
	Time Space	A practical		
	trada off	A practical		
	A symptotic	C S P A L ULA		
	Asymptotic Notations for	U.S.DALUJA		
	Complexity of	All		
	Algorithms	to Data		
	Algorithms,	lo Dala Structures		
	Dolo of	Chapter 1(1.6		
	, Kole of	Algorithms)		
	data structures	Algoriums)		
	and			
	alla			
	argoritanaa			
	and types of			
	data in			
	data in			
	Definition			
	Lincor orroyo			
	Linear arrays,			
	arrays as			
	ADI, Dopresentatio			
	n of Linoar			
	Arrays in			
	Allays III Memory			
	Traversing			
	Linear arrays			
	Inserting and			
	deleting			
	Multi-			
	Iviulu-			

		dimensional arrays,				
		Matrices,				
		Sparse				
		Matrices				
2	Arrays		Data Stuctures	International	14	1. Write a C program to input
			Through C (Academia:		elements into an array of integers
			A practical	https://ocw.mit.edu/		and calculate their sum and
			Approach)	<u>courses/6-006-</u>		average. Take the input from user
			G.S.BALUJA	introduction-to-		to enter the size of the array and
			Arrays	algorithms-spring-		its elements. Display the sum and
			Chapter 3	2020/resources/lectu		average of the elements.
				<u>re-2-data-structures-</u>		2. Develop a C program to
				and-dynamic-arrays/		reverse the elements of an array
						of integers. Ask the user to input
						the size of the array and its
						elements. Reverse the elements of
				IndustryMapping:C		the array in-place and then
				Lion,		display the reversed array.
				Eclipse(IDE), Visual		3. Create a C program to sort an
				Studio, CLion,		array of integers in ascending
				Clang		order. Allow the user to input the
						size of the array and its elements.
						Implement any sorting algorithm
						(e.g., bubble sort, selection sort)
						to sort the elements, and then
						display the sorted array.
						6. Write a C program to create a
						linked list of integers. Implement
						runctions to insert elements at the
						beginning, end, and at a specified
						position in the linked list. Also,
						include a function to display the
						elements of the linked list.

Linked Lists	Linked Lists,	Data Stuctures	7. Develop a C program to reverse a
	Representatio	Through C (linked list. Implement a function to
	n in memory,	A practical	reverse the elements of a given
	Traversing,	Approach)	linked list in-place and then display
	Searching,	G.S.BALUJA	the reversed linked list.
	Memory	Linked List	8. Develop a C program to reverse a
	allocation	Chapter 7	linked list. Implement a function to
	(Garbage	-	reverse the elements of a given
	collection,		linked list in-place and then display
	overflow,		the reversed linked list.
	underflow),		
	Insertion,		
	Deletion,		
	Circular		
	linked lists,		
	Doubly linked		
	lists, Header		
	linked lists		
Stacks	Definition, Array	Data Stuctures	1. Write a C program to check
	representation,	Through C (whether the given expression has
	Linked	A practical	balanced parentheses using a
	representation,	Approach)	stack. The program should ask the
	Polish notation,	G.S.BALUJA	user to input an expression
	Evaluation of	Stacks	containing only parentheses (such
	Postfix Expressions,	Chapter 5	as "(({}))" or "{[()]}" etc.).
	Transforming Infix		Implement a stack data structure
	to Postfix		and use it to verify if the
	Expressions		parentheses are balanced or not.
			2. Develop a C program to
			evaluate a postfix expression
			using a stack. Take input from
			user a postfix expression (e.g.,
			"53+2*") and implement a stack-
			based algorithm to evaluate the
			expression and display the result.

Queues	Definition, Array	Data Stuctures		1. Write a C program to
	representation,	Through C (implement a queue data structure.
	Linked	A practical		Implement functions to enqueue
	representation,	Approach)		(insert) elements into the queue,
	Circular queues,	G.S.BALUJA		dequeue (remove) elements from
	Priority Queue, D-	Queues		the queue, and display the
	Queue	Chapter 6		elements of the queue.
				2. Develop a C program to
				implement a circular queue data
				structure. Implement functions to
				enqueue, dequeue, and display
				elements in a circular queue.
				3. Design a C program to
				implement a queue using a linked
				list. Implement functions to
				enqueue, dequeue, and display
				elements in the linked list-based
			-	queue.
			4	4. Create a C program to implement
			ě	a priority queue using arrays.
]	Implement functions to enqueue
			6	elements with priority, dequeue
			6	elements based on their priority, and
			(display the elements of the priority
			(queue.
			-	5. Write a C program to simulate the
			1	functioning of a ticket counter using
			ě	a queue. Implement functions to
				simulate customers arriving at the
			1	ticket counter and getting served.
				Display the sequence of customers
				served.

3	Trees	Introduction	Trees	International	10	1. Write a C program to create a
		and Definition	C+	Academia:		binary search tree (BST) of integers.
		of Trees, Tree	hapter 8	1.		Implement functions to insert
		Terminology		https://ocw.mit.edu/		elements into the BST, perform
				<u>courses/6-006-</u>		inorder, preorder, and postorder
				introduction-to-		traversals, and display the elements
				algorithms-spring-		accordingly.
				2020/resources/lectu		2. Develop a C program to calculate
				re-6-binary-trees-		the height of a binary tree.
				<u>part-1/</u>		Implement a function to calculate
						the height (depth) of the binary tree
				2.		and display the result.
				https://ocw.mit.edu/		
				<u>courses/6-006-</u>		3. Create a C program to find the
				introduction-to-		mirror image of a binary tree.
				algorithms-spring-		Implement a function to convert the
				2020/resources/lectu		given binary tree into its mirror
				re-7-binary-trees-		image and display the mirror image
				part-2-avl/		tree.
						4. Design a C program to perform
						operations on a binary search tree
				IndustryMapping:C		(BST). Implement functions to
				Lion,		search for an element in the BST,
				Eclipse(IDE),Visual		delete an element from the BST, and
				Studio, CLion,		display the resulting BST after each
				Clang		operation.
						5. Write a C program to perform
						level order traversal of a binary tree.
						Implement a function to traverse the
						binary tree level by level and display
						the elements in each level.

	Binary Tree	Representing	Trees			
		Binary Trees	Chapter 8			
		in Memory.	r			
		Traversing				
		Binary Tree:				
		Preorder				
		traversal In-				
		order				
		traversal				
		Post-order				
		traversal				
		Traversal				
		algorithms				
		using stacks				
	Dinory	Sourching in	Trace			
	Dillal y Soorch Troos	Binary Soarch	Chapter 8			
	Search frees	Troop	Chapter o			
		Incorting in				
		Dinamy Second				
		Binary Search				
		Trees,				
		Deleting in a				
		Binary Search				
		Iree				
	Advanced	AVL trees and	Data Stuctures			
	Tree	implementatio	Through C (
	Structures	ns, M-trees,	A practical			
		B-Trees	Approach)			
		(definition	G.S.BALUJA			
		only)	Trees			
			Chapter 8	-		
4	Searching	Sequential	Searching and	International	10	1. Write a C program to perform
		Search,	Hashing	Academia:		linear search on an array of
		Binary	Chapter 8	. <u>https://ocw.mit.edu/c</u>		integers. Implement a function to
		Search,		ourses/6-006-		search for a given element in the
		Indexed		introduction-to-		array using linear search. Ask the

	Search		algorithms-spring- 2020/resources/lectu re-3-sets-and- sorting/ https://ocw.mit.edu/c ourses/6-006- introduction-to- algorithms-spring- 2020/resources/lectu re-4-hashing/ https://ocw.mit.edu/c ourses/6-006- introduction-to- algorithms-spring- 2020/resources/lectu re-5-linear-sorting/	 user to input the size of the array and its elements, as well as the element to be searched. Display the index of the element if found, otherwise indicate that the element is not present in the array. 2. Develop a C program to perform binary search on a sorted array of integers. Implement a function to search for a given element in the sorted array using binary search. Ask the user to input the size of the array and its elements in ascending order. Then, ask for the element to be searched and use the binary search algorithm to find its index. Display the index of the element in the array.
Sorting	Introduction and Notation, Insertion Sort, Selection Sort, Shell Sort, Divide And Conquer, Merge sort for Linked List, Quick sort for Contiguous List.	Sorting Chapter 10		 3. Develop a C program to sort an array of integers in ascending order using the merge sort algorithm. Implement a function to perform merge sort on the array. Ask the user to input the size of the array and its elements. After sorting, display the sorted array. 4. Write a C program to sort an array of integers in ascending order using the bubble sort algorithm. Implement a function

			to perform bubble sort on the
			array. Ask the user to input the
			size of the array and its elements.
			After sorting, display the sorted
			array.
Hashing	Sparse Tables,	Data Stuctures	Write a C program to implement
	Choosing a	Through C (a hash table data structure.
	Hash function,	A practical	Implement functions to insert
	Collision	Approach)	key-value pairs into the hash
	Resolution	G.S.BALUJA	table, retrieve the value associated
	with Open	Searching and	with a given key, and handle
	Addressing,	Hashing	collisions using chaining. Ask the
	Collision	Chapter 8	user to input keys and values, and
	Resolution by		demonstrate the functionality of
	Chaining.		the hash table

TEXT BOOK:

- 1. Seymour Lipschutz, "Data Structures with C", Schaum's out Lines, Tata Mc Graw Hill, 2011.
- 2. Data Stuctures Through C (A practical Approach) G.S.BALUJA
- 3. Robert Kruse, C.L.Tondo, Bruce Leung, Shashi Mogalla, "Data Structures and Program Design using C", Pearson Education, 2009.

REFERENCE BOOKS:

- 1. Mark Allen Weiss," Data Structures and Algorithm Analysis in C", Second Edition, Pearson Education, 2013
- 2. Reema Thareja, "Data Structures Using C", Oxford Universities Press 2014, 2nd Edition.
- 3. Alfred V Aho, John E Hopcroft and Jeffery D Ullman, "Data Structures and Algorithms", Pearson Education.

4. Samiran Chattopadhyay, Debabrata Ghosh Dastidar and Matagini Chattopadhyay, "Data Structures through C Language", BPB Publication.

List of equipment/apparatus for laboratory experiments:

Sl. NO	Requirements
1.	Computer with moderate configuration
2.	A programming language compiler

Institute of Engineering & Management, Salt Lake Campus Institute of Engineering & Management, New Town Campus University of Engineering & Management, Jaipur Syllabus for BCA Admission Batch 2024

Subject Name: Object Oriente	ed Programming	Credit: 4	Lecture H	ours: 40					
Subject Code: BCACC202									
Pre-requisite: Basics kr	Pre-requisite: Basics knowledge of programming language, Logic building skills.								
Relevant Links:									
Study Materials	Coursera	LinkedIn Learning	Infosys Springboard	<u>NPTEL</u>					

COURSE OBJECTIVES:

- 1. To introduce students to a powerful programming language
- 2. To understand the basic structure of object oriented program
- 3. To gain knowledge of various programming errors
- 4. To enable the students to make flowchart and design an algorithm for a given problem
- 5. To enable the students to develop logics and programs

COURSE OUTCOMES:

CO 1: Students will be able to learn different programming techniques using object-oriented technology with C++.

CO 2 Students will be able to learn how to solve real life problems by implementing data, security, reuse of code, polymorphism etc.

CO 3: Students will be able to learn how to solve real life problems by using pointer, virtual function and FILE handling.

CO 4: Students will be able to learn how to solve real life problems by implementing exception handling and generic programming.

Module Number	Торіс	Sub topics	Chapter No. (Text Book)	Mapping with Industry and International	Lecture Hours	Corresponding Lab Assignment
Number	Introduction of Object Oriented Programming, Introduction of C++ Tokens and Keywords, Function	A look of object oriented programming, Object oriented programming paradigm, Basics of object oriented programming, Benefits of object oriented programming, Object oriented languages, Applications of object oriented programming, Application of C++, A simple C++ program, More C++ statements, An example with Class, Structure of C++ program, Creating a source file, Compiling and linking Tokens, Keywords, Identifiers and constants, Basic data types, User defined data types, Derived data types, Symbolic constants, Type compatibility, Declaration of variables, Dynamic initialization of variables, Reference variables, Operators in C++,Scope resolution operator, Member dereferencing operators, Memory management operators, Manipulators, Type cast operator, Expressions and their types, Special assignments	(Text Book) 1, 2, 3, 4	and International Academia International Academia: https://ocw.mit.edu/course s/6-096-introduction-to-c- january-iap-2011/ Industry Mapping: CLion, Eclipse (IDE), Sublime Text, Atom (Text Editors), Visual Studio Debugger (Debuggers)	B	 Console based C++ program to display, insert, search and sort elements of an array, prime no, factorial, Fibonacci series, palindrome etc.
		expressions, Implicit				

		conversions, Operator overloading, Operator precedence, Control structures Introduction, The main function, Function prototyping, Call by reference, Return by reference, Inline functions, Default arguments, Const. arguments, Function overloading, Friend and virtual functions, Math library function				
2	Introduction to class, Constructor and Destructor, Operator Overloading, Inheritance	Introduction, Specifying a class, Defining a member functions, A C++ program with class, Making an outside function inline, Nesting a member functions, Private member function, Arrays within a class, Memory allocation for objects, Static data members, Static member functions, Arrays of objects, Objects as function arguments, Friendly function, Returning objects, Const member functions, Pointers to member, Local classes. Constructors, Parameterized Constructors in a class, Constructors with default arguments, Dynamic initialization of objects, Copy Constructors, Dynamic	5, 6, 7, 8	International Academia: https://ocw.mit.edu/course s/6-096-introduction-to-c- january-iap-2011/ International Academia: https://ocw.mit.edu/course s/6-s096-introduction-to- c-and-c-january-iap- 2013/pages/lectures-and- assignments/c-inheritance/ Industry Mapping: CLion, Eclipse (IDE), Sublime Text, Atom (Text Editors), Visual Studio Debugger (Debuggers)	12	 Program based on object, class, and encapsulation property Program based on array of object Program based on various (default, parameterize, copy) constructor Constructor overloading program Destructors program Program based on various operator overloading Program based on function overloading Program based on friend function Program based on various type of inheritance

		Constructors, Constructing two dimensional array, Const objects, Destructors, Defining operator overloading, Overloading unary operators, Overloading binary operators, Overloading unary operators using friends, Manipulation of string using operators, Rules for Overloading operators, Type conversions				
		Defining derived classes, Single inheritance, Making private member inheritable, Multilevel inheritance, Multiple inheritance, Hierarchical inheritance, Hybrid inheritance, Virtual base classes, Abstract classes, Constructors in derived classes, Member classes: nesting of classes				
3 Poi virt fun C+ FIL har in C	vinter and rtual nction ++ Streams LE ndling C++	Introduction, Pointers, Pointers to objects, this pointer, Pointers to derived classes, Virtual functions, Pure Virtual functions C++ streams, C++ stream classes, Unformatted I/O operators, Formatted I/O operations, Managing output with monipulator	9, 10, 11	International Academia: https://ocw.mit.edu/course s/6-096-introduction-to-c- january-iap-2011/ Industry Mapping: CLion, Eclipse (IDE), Sublime Text, Atom (Text Editors), Visual Studio Debugger (Debuggers)	10	 Program based on pointer concept Virtual and Pure virtual function programs File and streams based programs

		Classes for File stream operations, Opening and closing a File, Detecting end- of-file, More about Open();File modes, File pointers and their manipulations, Sequential input and output operations, Updating a File: Random access, Error handling during File operations, Command-line arguments.				
4	Template, Exception Handling, Standard Template Library	Introduction to generic programming, Class templates, Class templates with multiple parameters, Function templates, Function templates with multiple parameters, Overloading of template functions, Member function templates, Non-type template arguments Introduction of exception, Basics of exception handling, Exception handling mechanism, Throwing mechanism, Rethrowing an exception, Specifying exceptions Components of STL, Containers, Algorithms, Iterators, Application of	12, 13	International Academia: https://ocw.mit.edu/course s/6-096-introduction-to-c- january-iap-2011/ Industry Mapping: CLion, Eclipse (IDE), Sublime Text, Atom (Text Editors), Visual Studio Debugger (Debuggers)	10	 Function and class template based program Program based on various type of exceptions.

	container classes, Function objects		

Learning Resources:

Text Books:						
Name of Author	Title of the Book	Edition/ISSN/ISBN	Name of the Publi	sher		
E. Balagurusamy	Object	Fourth Edition	Tata McGraw Hill	Download eBook		
	Oriented					
	Programming with C++					
Reference Books:						
Herbert Schildt	C++: The Complete Reference	Fourth Edition	Tata McGraw Hill	Download eBook		
List of equipment/apparatus	for laboratory experiments:					
SL. No.						
1 C	omputer with moderate configuration					
2 g-	2 g++ compiler and other software's as required					
3 C	++ compiler (online)	Online compiler-1	Online compiler-2			

Institute of Engineering & Management, Salt Lake Campus Institute of Engineering & Management, New Town Campus University of Engineering & Management, Jaipur

Lecture Hours: 40

Syllabus for BCA Admission Batch 2024

Credit: 4

Subject Name: Computer Architecture Subject Code: BCACC203 Pre-requisite: Digital Electronics Relevant Links: Study Material Coursera

LinkedIn Learning

<u>NPTEL</u>

Course Objectives:

- 1. Basic revision of Boolean algebra and their simplification.
- 2. To study the Register Transfer Language and Microoperations
- 3. To introduce the computer registers timing and control, instruction and interrupt cycle.
- 4. To illustrate the concept Central Processing Unit, Input/Output operations and Memory Management.

Course Outcomes:

- CO1 Upon completion of this course, student will be able to understand basic structure of computer and perform computer arithmetic operations
- CO2 Ability to understand control unit operations with design memory organization that uses banks for different word size operations
- CO3 Understand the concept of register transfer language and basic microoperations
- CO4 Understand the concept of I/O organization and conceptualize instruction level parallelism.

Module number	Торіс	Chapter Name	Sub-topics	Mapping with Industry and International Academia	Lectu re Hours	Corresponding Lab Assignment
1	Data Representati on Register Transfer and Micro operations.	Computer System Architecture, M.Morris Mano, PEARSON, Chapter 4 Computer System Architecture, M.Morris Mano, PEARSON, Chapter 5	Data type, Complement, Fixed point Representation, Floating point representation, other binary code. Register Transfer Language, Register Transfer, Bus and Memory Transfers, Register Transfer Micro-operations, Arithmetic Micro- operations, Logic Micro-operations, Shift Micro-operations	International Academia: (https://ocw.mit.edu/cours es/6-823-computer- system-architecture-fall- 2005/resources/102 fifties) Industry Mapping: Software: Xilinx Vivado, Icarus Verilog, Hardware: FPGA Kit, Basys3 board	8	 Execute the HDL programs to draw the circuits for basic gates. Develop an HDL code snippet that performs a combination of arithmetic and logic micro-operations on two binary numbers.
2	Basic Computer Organization and Design	Computer System Architecture, M.Morris Mano, PEARSON, Chapter 6	Instruction code, computer register, computer Instruction, timing and control, Instruction cycle, Memory reference instruction, Input- output and interrupt, complete computer description, Design of basic computer, and design of accumulator logic	International Standards :(https://ocw.mit.edu/courses/ 6-823-computer-system- architecture-fall- 2005/resources/104_micropr og/) Industry Mapping: Software: Xilinx_Vivado, Icarus Verilog, Hardware: FPGA_Kit, Basys3 board	12	 Design an HDL code that defines an instruction code for a simple operation (e.g., addition) and implements the corresponding operation using computer registers. Write an HDL code to implement a 2-bit

	Computer Arithmetic	Computer System Architecture, M.Morris Mano, PEARSON, Chapter 11	Introduction, Addition and subtraction, Multiplication algorithm, division algorithm, Floating point arithmetic operation, Decimal arithmetic unit, Decimal arithmetic operation			3.	full adder at the behavioral level. Create an HDL implementation for a basic computer, including the ALU, registers, and control unit components.
	Programming the Basic Computer	Computer System Architecture, M.Morris Mano, PEARSON, Chapter 7	Introduction, Machine Language, Assembly Language, The assembler, Programming loop, Programming arithmetic and logic operation, subroutine, Input Output programming				
3	Memory Organization	Computer System Architecture, M.Morris Mano, PEARSON, Chapter 13	Memory Hierarchy, Main Memory, Auxiliary Memory, Associative Memory, Cache Memory, Virtual Memory, Memory Management Hardware	International Standards : (https://ocw.mit.edu/cour ses/6-823-computer- system-architecture-fall- 2005/resources/107_cache s/) Industry Mapping: Software: Xilinx Vivado, Icarus Verilog, Hardware: FPGA Kit, Basys3 board	10	1.	Design a circuit for implementing any arithmetic instruction in a pipeline. Also, develop the instruction and interrupt pipeline concept. Justify the circuit with a proper simulation Let A0, A1, A2, and

Central	Computer	Introduction, General	A3 be the four
Progressing	System	Register	inputs, S0 and S1 be
Unit (CPU)	Architecture,	Organization, Stack	the select line
	M.Morris	Organization,	inputs, and Y be the
	Mano,	Instruction Formats,	output for
	PEARSON,	Addressing Modes,	illustrating a
		Data Transfer and	multiplexer. Use
	Chapter 9	Manipulation,	Dataflow
		Program Control,	architecture for
		Reduced Instruction	drawing the circuit.
		Set Computer (RISC)	Show the schematic
			diagram, Truth
			table, and Karnaugh
			Map.
			-
			3. Use the following
			equation Sum= x
			XOR y XOR Cin,
			Carry= (x AND y)
			OR (Cin AND (x
			XOR y)) to develop
			a Full adder using
			two Half adders
			using the concept of
			components and
			port map. Show the
			schematic diagram,
			Truth table, and
			Karnaugh Map.
			Write an HDL code to implement
			a D-type latch at the behavioral
			level.

4	Pipeline and Vector Processing	Computer System Architecture,	Parallel Processing, Pipelining, Arithmetic	International Standards: (https://ocw.mit.edu/cours es/6-823-computer-	10	1.	Implement an 8-bit right shift register
		Mano, PEARSON, Chapter 10	Pipeline, Instruction Pipeline, RISC Pipeline, Vector Processing, Array Processors	system-architecture-fall- 2005/resources/106_pipeli ne/) Industry Mapping: Software: Xilinx Vivado, Icarus Verilog, Hardware: FPGA Kit.	,	2.	 write a parallel todu facility. Write an HDL code to implement a 32- bit Booth's multiplier using behavioral style. Write an HDL code
	Input-Output Organization	Computer System Architecture, M.Morris Mano, PEARSON, Chapter 12	Peripheral Devices, Input-Output Interface, Asynchronous Data Transfer, Modes of Transfer, Priority Interrupt, Direct Memory Access (DMA), Input-Output Processor (IOP), Serial Communication	Basys3 board			using switch-level modeling to implement the function $F = (A'.B + C,D)'$ using CMOS logic. You may use the nmos and pmos transistors for the purpose.

TEXT BOOK:

1. Computer System Architecture, M.Morris Mano, PEARSON

REFERENCE BOOKS:

- 1. Computer Organization & Architecture-Designing for performance, William Stallings, PERSON
- 2. Computer Architecture & Organization, J.P.Hayes, Tata McGraw Hill

Sl. NO	Requirements
1.	Computer with moderate configuration
2.	Xilinx Software

List of equipment/apparatus for laboratory experiments:

Institute of Engineering & Management, Salt Lake Campus Institute of Engineering & Management, New Town Campus University of Engineering & Management, Jaipur

Syllabus for BCA Admission Batch 2024

Subject Name: Mathematics Subject Code: BCAMD201 Pre-requisite: Basic kn	for Computing owledge in number system and	Credit: 2 geometry	Lecture Hours: 40
Relevant Links:			
Study Material	Coursera	Linkedin	<u>NPTEL</u>

COURSE OBJECTIVES:

- **1.** To understand and apply Probability concepts
- 2. To analyze data using descriptive statistics
- 3. To apply inferential statistics for decision-making
- 4. To develop problem-solving and critical thinking skills

COURSE OUTCOMES:

CO1 Students will be able to understand and apply fundamental concepts of probability, including definitions, rules, and theorems, to analyze and interpret real-world situations involving uncertainty.

CO2 Students will be able to develop proficiency in using descriptive and inferential statistical methods to summarize data, make predictions, and draw conclusions based on sample data, including the application of confidence intervals and hypothesis testing.

CO3 Students will be able to gain skills in collecting, organizing, and analyzing data using appropriate statistical techniques and tools, enabling students to effectively communicate results and insights derived from their analyses.

CO4 Students will be able to develop the ability to create and interpret various statistical charts and graphs (such as histograms, pie charts, box plots, and scatter plots) to effectively visualize data trends, patterns, and distributions, enabling informed decision-making based on statistical analysis.

Module No	Торіс	Sub Topic	Chapter Name	Mapping with Industry and International Academia	Lecture Hours
MODULE 1	Basics of Probability Theory	Introduction, Introductory Definitions, Classical Definition of Probability, Theorems on Probability & Addition Theorem, Axiomatic definition of Probability, Conditional Probability, Multiplication Rule of Probability, Independent Events, Baye's Theorem.	Basics of Probability Theory, Chapter- 3.1,BCA Mathematics Vol- III	International Academia: Introduction to Probability and Statistics IndustryMapping: Matlab	
					10
MODULE 2	Collection of Data and Frequency Distribution Charts and Diagram	Introduction, Primary Data, Secondary Data, Method of Collection of Primary Data, Source of Secondary Data, Classification and Tabulation of Data, Tabulation of Data and Statistical table. Statistics and its Related Terms, Frequency Distribution, Diagram, Bar Chart, Pie-Chart, Line Chart, Histogram of a Frequency Distribution, Frequency Polygon	Collection of Data Chapter-4.1, BCA Mathematics Vol- III Frequency Distribution Charts and Diagram	International Academia: Introduction to Probability and Statistics IndustryMapping: Matlab	10
		Cummulative Frequency Polygon or Ogive	Chapter-4.2, BCA Mathematics Vol- III		
MODULE 3	Measures of Central Tendency	Introduction, Mean, Arithmetic Mean(AM), Geometric Mean(GM), Harmonic Mean(HM), Median, Mode, Quartiles, Calculation of	Measures of Central Tendency,	International Academia: Introduction to Probability and Statistics	10

		Quartiles, Deciles, Calculation of Deciles, Percentiles, Calculation of Percentiles.	Chapter-4.3,BCA Mathematics Vol- III	IndustryMapping: Matlab	
MODULE 4	Measures of Dispersion	Introduction, Classification of Measure of Dispersion, Range, Quartile deviation(Semi inter quartile range), Mean deviation(Mean absolute deviation), Variance and Standard Deviation, Relative Measures of Dispersion	Measures of Dispersion, Chapter-4.4,BCA Mathematics Vol- III	International Academia: Introduction to Probability and Statistics IndustryMapping: Matlab	10

TEXT BOOK: BCA MATHEMATICS, Vol-III, B.K.PAL, K.DAS,Fourth Edition

REFERENCE BOOKS:

1. Fundamental Treatise on Probability and Statistics, Dr. Arup Mukherjee